|
В разделе материалов: 15 Показано материалов: 1-10 |
Страницы: 1 2 » |
ПЛАН
1. Геополитические идеи «евразийства». 2
2. Россия и НАТО.. 6
3. Внешняя политика Китая. Россия во внешней политике Китая. 9
Список литературы.. 15
|
Содержание
Введение. 3
1. Общая характеристика Северо-Западного экономического района. 5
2. Новгородская область. 8
3. Калининградская область. 12
Список использованных источников. 20
|
Вариант № 10.
№10 В задаче даны вершины треугольника ABC. А(19; 3), В(–5; –4), С(–9; –1).
Найти:
1) длину стороны ВС;
2) уравнение высоты из вершины А и ее длину;
3) уравнение медианы из вершины А;
4) записать уравнение прямой, проходящей через вершину А параллельно стороне ВС;
5) построить чертеж.
№ 30. Расценки на проведение работ одним из трёх видов оборудования А,В,С для каждого из трёх видов услуг: I – техническое обслуживание, II – транспортные услуги, III – капитальный ремонт, заданы векторами d1(a1,b1,c1), d2(a2,b2,c2), d3(a3,b3,c3). Полные затраты на выполнение каждого из трёх видов услуг заданы вектором Q(g1,g2,g3).Определить расчётные объёмы работ (число часов использования оборудования каждого вида), которые смогут окупить затраты на услуги. Составить математическую модель задачи, решить задачу а) матричным методом, б) методом Крамера.
Дано: d1(5, 2, 1); d2(7, 5, 1); d3(1, 1, 4); Q(160, 240, 95).
№50. Построить линии:
№70. Зависимость уровня потребления у (усл.ед) некоторого вида товаров от уровня дохода семьи х выражается формулой .
Построить график этой зависимости, произвести экономический анализ. Вычислить уровень потребления при x = x0 = 100.
Контрольная работа №2.
№10. Найти пределы:
№30. Найти производные данных функций в п. (а,б), в п.(в) найти полный дифференциал функции Z = f(x,y).
№50. Исследовать функцию и построить график.
№70. Спрос на товар Д в зависимости от дохода потребителей (х) определяется функцией Д(х). Рассчитать эластичность функции спроса относительно дохода и найти значение показателя эластичности для заданных значений х. Дать экономическую интерпретацию полученным результатам.
Дано: , х = 2 (ден. ед.)
|
СОДЕРЖАНИЕ
Задание 1. Вариант 9. Обзор редакторов и настольных издательских систем. 3
Задание 2. Вариант 9. Табличный процессор MS Excel 7
Задание 3. Вариант 9. Задание 3. Информационно-поисковые системы.. 11
Список литературы: 13 |
Содержание
Задание 1. Теоретическая часть. Устройства персонального компьютера. 3
Задание 2. Пользовательский интерфейс операционной системы Microsoft Windows 8
Задание 3. Выполнение расчётов и графический анализ данных в Microsoft Excel 15
Задание 4. Поиск информации в глобальной сети Интернет. 18
Список литературы ………………………………………………………...…21 |
Физика, вар 10.
№1. Конденсатор образован 21 латунным листом, между которым помещены стеклянные прокладки толщиной 2 мм. Площади латунных листов 200см2. Листы соединены так, что образуют батарею параллельно соединенных конденсаторов. Определите её электроёмкость (ε стекла = 1).
№2. Определите сопротивление и длину никелинового проводника, присоединённого к полюсам батареи из трёх последовательно соединённых аккумуляторов с э.д.с. по 2 В и внутренним сопротивлением 0,04 Ом каждый, если ток в цепи 1,5 А, а сечение проводника 0,2 мм2.
№3. С какой силой взаимодействуют 2 заряда 0,66·10–7 Кл и 1,1·10–5 Кл в воде на расстоянии 3,3 см? На каком расстоянии их следует поместить в вакууме, чтобы сила взаимодействия осталась прежней? (ε воды = 81; ε вакуума =1).
Физика |
Просмотров: 1678 |
Добавил: igete |
Дата: 09.07.2015
|
Физика, вар 10.
№10. Материальная точка движется в плоскости ху согласно уравнениям:
x = A1+ B1t + C1t2 и y = A2 + B2t + С2t2, где B1 = 7м/c; С1 = -2м/с2; В2 = -1м/с; С2 = 0,2 м/с2.
Найти модули скорости и ускорения точки в момент времени t = 5c.
№20. Точка движется по окружности радиусом R = 20 см с постоянным тангенциальным ускорением аτ = 5см/с2. Через какое время t после начала движения нормальное ускорение ан будет вдвое больше тангенциального?
№30. Человек массой m1 = 70 кг, бегущий со скоростью υ1 = 9 км/ч, догоняет тележку массой m2 = 190 кг, движущуюся со скоростью υ2 = 3,6 км/ч, и вскакивает на нее. С какой скоростью станет двигаться тележка с человеком?
№40. Автомобиль массой m = 1020 кг, двигаясь равнозамедленно, останавливается через время t = 5с, пройдя путь s = 25м. Найти начальную скорость υ0 автомобиля и силу торможения F.
№50. Сплошной шар скатывается по наклонной плоскости, длина которой 10 метров и угол наклона 30 градусов. Определить скорость шара в конце наклонной плоскости.
№10. Найти плотность ρ азота, при температуре T = 400К и давлении р = 2 МПа.
№20. Во сколько раз увеличится объём водорода количеством вещества ν = 0,4 моль при изотермическом расширении, если при этом газ получит теплоту Q = 800 Дж? Температура водорода Т = 300К.
№30. Два точечных заряда Q1 = –30 нКл и Q2 = 100 нКл находятся на расстоянии d = 20 см друг от друга. Определить силу F, действующую заряд Q3 = –10нКл, удалённый от обоих зарядов на одинаковое расстояние, равное d.
№40. Пылинка массой 4нг, несущая на себе N = 10 электронов, прошла ускоряющую разность потенциалов U = 1 МВ. Какую скорость υ приобрела пылинка?
№50. Источник постоянного тока один раз присоединяют к резистору сопротивлением 9 Ом, другой раз – 16 Ом. В первом и во втором случаях количество теплоты, выделившееся на резисторах за одно и то же время оказалось одинаково. Определить внутреннее сопротивление источника тока.
Физика |
Просмотров: 465 |
Добавил: igete |
Дата: 09.07.2015
|
Физика ДГУПС, вар 6.
Контрольная №1, механика.
№106. Тело брошено под углом α = 30° к горизонту со скоростью υ0 = 30 м/с. Каковы будут нормальное аn и тангенциальное аτ ускорения тела через время t = 1 с после начала движения?
№116. На полу стоит тележка в виде длинной доски, снабженной легкими колесами. На одном конце доски стоит человек. Масса его m1 = 60 кг, масса доски m2 = 20 кг. С какой скоростью (относительно пола) будет двигаться тележка, если человек пойдет вдоль нее со скоростью (относительно доски) V = 1 м/с? Массой колес и трением пренебречь.
№126. Шар массой m1 = 4 кг движется со скоростью V1 = 5 м/с и сталкивается с шаром массой m2 = 6 кг, который движется ему навстречу со скоростью V2 = 2 м/с. Определить скорости u1 и u2 шаров после удара. Удар считать абсолютно упругим, прямым, центральным.
№136. Если на верхний конец вертикально расположенной спиральной пружины положить груз, то пружина сожмется на Δl = 3 мм. На сколько сожмет пружину тот же груз, упавший на конец пружины с высоты h = 8 см?
№146. По горизонтальной плоскости катится диск со скоростью V = 8 м/с. Определить коэффициент сопротивления, если диск, будучи предоставленным самому себе, остановился, пройдя путь S = 18 м.
№156. Однородный стержень длиной l = 1,0 м может свободно вращаться вокруг горизонтальной оси, проходящей через один из его концов. В другой конец абсолютно неупруго ударяет пуля массой m = 7 г, летящая перпендикулярно стержню и его оси. Определить массу М стержня, если в результате попадания пули он отклонится на угол α = 60°. Принять скорость пули V = 360 м/с.
Дано: l = 1м; m2 = 7г = 0,007кг; α = 600; V = 360м/с.
№166. На каком расстоянии от центра Земли находится точка, в которой напряженность суммарного гравитационного поля Земли и Луны равна нулю? Принять, что масса Земли в 81 раз больше массы Луны и что расстояние от центра Земли до центра Луны равно 60 радиусам Земли.
№176. Определить период Т колебаний математического маятника, если его модуль максимального перемещения Δr = 18 см и максимальная скорость Vmax = 16 см/с.
№206. Определить концентрацию n молекул кислорода, находящегося в сосуде вместимостью V = 2л. Количество вещества ν кислорода равно 0,2 моль.
№216. Вычислить плотность ρ азота, находящегося в баллоне под давлением р = 2 МПа и имеющего температуру T = 400К.
№226. Определить среднюю квадратичную скорость молекулы газа, заключенного в сосуд вместимостью V = 2л под давлением р = 200кПа. Масса газа m = 0,3 г.
№236. Определить молярные теплоемкости газа, если его удельные теплоемкости
№246. Кислород находится под давлением р = 133 нПа при температуре T = 200 К. Вычислить среднее число столкновений молекулы кислорода при этих условиях за время t = 1с.
№256. Азот массой m = 0,1 кг был изобарно нагрет от температуры T1 = 200 К до температуры T2 = 400 К. Определить работу A, совершенную газом, полученную им теплоту Q и изменение ΔU внутренней энергии азота.
№266. Газ, совершающий цикл Карно, отдал теплоприемнику 67% теплоты, полученной от теплоотдатчика. Определить температуру T2 теплоприемника, если температура теплоотдатчика T1 = 430 К.
№276. Глицерин поднялся в капиллярной трубке диаметром канала d = 1 мм на высоту h = 20 мм. Определить поверхностное натяжение α глицерина. Считать смачивание полным.
Физика |
Просмотров: 865 |
Добавил: igete |
Дата: 09.07.2015
|
ПЛАН
Введение. 3
1. Экономико-географическое положение Дальнего Востока. 5
2. Современное состояние рыбопромышленного комплекса региона. 7
3. Машиностроительный комплекс ДВ. 7
Заключение. 11
Библиографический список. 12 |
Эконометрика ХГАЭП, вариант 1.
Задание №1. Имеются данные за 12 месяцев года по району города о рынке вторичного жилья (Y – стоимость квартиры, тыс.у.е., Х – размер общей площади, м2). Данные приведены в таблице 1.1.
Таблица 1.1.
Месяц
1
2
3
4
5
6
7
8
9
10
11
12
,тыс.у.е.
13,0
16,4
17,0
15,2
14,2
10,5
20,0
12,0
15,6
12,5
13,2
14,6
Х, м2
37,0
60,0
60,9
52,1
40,1
30,4
43,0
32,1
35,1
32,0
33,0
32,5
Задание:
1. Рассчитайте параметры уравнений регрессии
2. Оцените тесноту связи с показателем корреляции и детерминации.
3. Рассчитайте средний коэффициент эластичности и дайте сравнительную оценку силы связи фактора с результатом.
4. Рассчитайте среднюю ошибку аппроксимации и оцените качество модели.
5. С помощью F - статистики Фишера (при оцените надежность уравнения регрессии.
6. Рассчитайте прогнозное значение прогн, если прогнозное значение фактора увеличится на 5% от его среднего значения. Определите доверительный интервал прогноза для =0,01.
Задание № 11.
Имеются данные о деятельности крупнейших компаний, в течении 12 месяцев 199х года. Известны – чистый доход (y), оборот капитала (x1), использованный капитал (х2) в млрд у.е.
y, млрд у.е.
5,5
2,4
3,0
4,2
2,7
1,6
2,4
3,3
1,8
2,4
1,6
1,4
х1, млрд у.е.
53,1
18,8
35,3
71,9
93,6
10,0
31,5
36,7
13,8
64,8
30,4
12,1
х2, млрд у.е.
27,1
11,2
16,4
32,5
25,4
6,4
12,5
14,3
6,5
22,7
15,8
9,3
Задание:
1. Рассчитайте параметры линейного уравнения множественной регрессии.
2. Дайте оценку силы связи факторов с результатом с помощью средних коэффициентов эластичности.
3. Оцените статистическую зависимость параметров и уравнения регрессии в целом с помощью соответственно критериев Стьюдента и Фишера .
4. Рассчитайте среднюю ошибку аппроксимации. Сделайте вывод.
5. Составьте матрицы парных и частных коэффициентов корреляции и укажите информативные факторы.
Задание № 21.
1.Используя необходимое и достаточное условие идентификации, определить, идентифицированное ли каждое уравнение модели.
2.Определить тип модели.
3.Определите метод оценки параметров модели.
4.Опишите последовательность действий при использовании этого метода.
Гипотетическая модель экономики:
-совокупное потребление в период t;
- совокупный доход в период t;
- инвестиции в период t;
- налоги в период t;
- государственные доходы в период t.
Задание №31. Имеются данные за 15 дней по количеству пациентов клиники, прошедших через терапевтическое отделение клиники в течении дня.
Дни
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Число пациентов
29
40
30
52
47
28
16
51
40
35
57
28
33
42
39
Требуется:
1.Определить коэффициенты автокорреляции уровней ряда первого и второго порядков.
2. Обосновать выбор уравнения тренда и определить его параметры, сделать выводы.
3. Сделать выводы |
|
|
Статистика |
Онлайн всего: 1 Гостей: 1 Пользователей: 0 |
|